The Recent Trends In RF Data Converters

- Advertisement -

Analogue-to-digital converters (ADC) and digital-to-analogue converters (DAC) act as bridges between the two domains. For years, these devices have remained the interface between the analogue and digital worlds. Data converters used to occupy a large chunk of your test bench or instrument rack and consumed a lot of power. The rate of data conversion offered by traditional ADCs/DACs was often a major bottleneck in any system. Today, there has been a drastic improvement in the performance of data converters. They are now incorporated into an SoC or an FPGA, leading to superior performance and power efficiency.

According to various research organisations, the global data converter market is expected to grow at a CAGR of 6.28 per cent and reach USD 6.37 billion by 2025. This growth is aided by several market factors such as the need for higher data rates in 5G infrastructures, the evolution of ultra-high speed data acquisition systems, the need for high-speed test and measurement solutions, the increasing demand for high-speed and high-resolution data for various defence, scientific and medical applications, etc. Data converters are most often used in RADAR and SIGINT (signals intelligence) applications, spectrum analysers, medical imaging, industrial, automotive safety applications, cellular base stations, and other communication infrastructure, among others.

In general, we can categorise these as general-purpose data converters and high-speed data converters, based on the sampling rate. In the higher radio frequency (RF) range (GHz), the speed offered by general purpose ADCs/DACs becomes a bottleneck. This article discusses highspeed digital-to-analogue converters and analogue-to-digital converters —their working principles and key enablers.

- Advertisement -

But first let’s look at traditional RF data conversion techniques.

The traditional approach—heterodyne conversion
Here’s a quick look at how an ADC or DAC is used in the traditional approach. An input RF signal is down-converted to an intermediate frequency, also known as IF. The carrier wave is shifted to the IF as an intermediate step by mixing the signal with a local oscillator. Once
the signal is in the IF range, simple analogue circuits are used to filter, fine tune and amplify or attenuate the signal, as required. Such processed analogue signals are then taken to the digital world through an ADC for digital signal processing.

Similarly, in digital-to-analogue conversion, the processed signal data is taken from the digital world to the analogue world through DAC, and from IF to RF through UP converters. This approach is called heterodyne conversion (IF).

Figure 1

A typical radio receiver design based on heterodyne conversion (IF) is shown in Figure 1.

The modulated RF carrier is passed through a low-noise amplifier (LNA) and band-pass filter (BPF) before converting to IF as shown in Figure 1. After passing through an anti-aliasing filter (AAF) the IF is digitised by the ADC. Demodulation is carried out at the baseband level.

The above approach is mostly due to the limitation of the conversion speed of ADCs. If we were to break the ADC speed barriers, would it be feasible to think of direct sampling?

Figure 2

Now, let’s look at the transmitter path for the heterodyne approach. Here, the baseband data is modulated in the digital domain and applied to the DAC to convert to the IF, which in turn is up-converted to RF using a mixer and LO, as shown in Figure 2.

Direct conversion or zero IF
To address the need for high-speed data conversion, a new technique called zero IF or RF sampling was implemented. This is an alternate to the heterodyne (IF) approach of handling RF signals using high-speed RF ADCs. In this case, the RF carrier is down-converted directly to the baseband instead of IF. The RF carrier is converted to the baseband (I&Q) using the IQ mixer as shown in Figure 3. Two ADCs are used to digitise I&Q data. Here, too, demodulation is carried out at the baseband level.

Figure 3

RF ADC
New high-frequency ADCs known as RF ADCs can directly sample wideband signals beyond 6GHz. In addition, these RF ADCs have built-in signal processing capabilities. An RF system designer, using the latest RF ADC, needs to design only the hardware platform and use software to configure the hardware to suit the application. An RF ADC with signal processing capabilities is shown in Figure 4.

Figure 4

Now, let’s look at the transmitter path for the zero IF approach. The baseband data is modulated in the I&Q modulator and applied to two DACs, which is further up-converted to RF using the IQ mixer and LO, as shown in Figure 5.

Figure 5

RF DAC
The high frequency DAC, known as RF DAC, can generate frequency up to 6GHz directly, thereby eliminating the need for IF-to-RF conversion. The RF DAC includes signal processing, as shown in Figure 6.

Figure 6

Conclusion
Zero IF systems reduce the component count and complexity of the design, hence bringing in a lot of advantages. The system noise factor is minimised, and the out-band RF blockers can be attenuated by the RF front-end filters. Overall, zero IF systems are compact and provide better performance. At the same time, since high-speed ADCs are new in the market and expensive, a cautious approach is required before finalising the design.

The trends for zero IF systems are further moving towards the System-on-Chip concept. High-speed ADCs and DACs integrated with programmable logic eliminate the need for complex digital interfaces between converters and the digital circuit. Such devices can be placed with the antennas and digitallyinterfaced to the processing world.


Rajeev Ramachandra is the chief technology officer and co-founder of Mistral Solutions Pvt Ltd. He holds a degree in computer science engineering from Bangalore University. Ramachandra has vast experience in processor based designs, ranging from embedded systems to VME, PCI, cPCI and USB bus based systems. He has also worked extensively on the Intel family and DSP based CPUs.

- Advertisement -

Most Popular Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here
Captcha verification failed!
CAPTCHA user score failed. Please contact us!

Exclusive

Growth Opportunities Connected With The Growing Semicon EcoSystem In India

0
India must concentrate on electronics products and semiconductor components, as progress in one area reinforces the other. The country can unlock immense economic opportunities...

“Don’t Let Designations Become A Wild Goose Chase”

0
In his childhood, he possessed just one sweater, meant to last through many winters. He could not join IIT Roorkee because the cost of...

“Capitalise On ‘China Plus Two,’ Where Products With Higher Value Addition Become The Focus”

0
EPIC Foundation aims to transform India into an electronics hardware product nation by collaborating with governments, universities, design houses, and startups. In a conversation...

Buzz

Ultraviolette Aims For European And Middle Eastern Expansion

0
Niraj Rajmohan, Co-Founder and CTO of Ultraviolette stated that 2024 is set to mark the company’s foray into international markets while simultaneously strengthening its...

Chargeup’s Goal: 25,000 Drivers In 17 Cities By 2025, Prioritizing Smaller Cities

0
Chargeup, the forefront battery financing and comprehensive EV asset management platform in India, is on a mission to integrate 100,000 drivers within the upcoming...

Ampere Nexus, Electric Scooter Launching April 30th

0
Greaves Electric Mobility’s Nexus, having recently traversed the distance from Kashmir to Kanyakumari, is set to be the brand’s inaugural luxury electric scooter and...

Important Sectors

Exploring India’s Limited Selection: Just Six Robust Hybrids Priced Under ₹ 5 Million

0
As the United States passenger car market embraces hybrid vehicles, India’s car market is teeming with benefits and convenience for consumers. Yet, within the...

Top 10 Selling Electric Cars In The World

0
In the list of top 10 selling electric cars in the world, it seems to be a tight race between China’s BYD and the...

Ultraviolette Aims For European And Middle Eastern Expansion

0
Niraj Rajmohan, Co-Founder and CTO of Ultraviolette stated that 2024 is set to mark the company’s foray into international markets while simultaneously strengthening its...

Ampere Nexus, Electric Scooter Launching April 30th

0
Greaves Electric Mobility’s Nexus, having recently traversed the distance from Kashmir to Kanyakumari, is set to be the brand’s inaugural luxury electric scooter and...

Ford Investes In Expanding EV Software Capabilities At Chennai Hub

0
Ford Business Solutions India, presently with a staff of 12,000, is poised to expand by an additional 3,000 employees. Ford, recognized for its efforts...

Manufacturing

Honda plans major EV factory construction in Canada,

0
Honda's dedication to this facility reflects its wider ecological objectives, which include a target to only offer zero-emission vehicles by 2040 and to attain...
Sona Comstar

Sona Comstar Launches Mexico Plant For North American EV Demand

0
The new facility, established to address the increasing demand for premium driveline solutions for BEVs in North America, will focus on manufacturing differential assemblies...

Sterling Tools Inks MoU With Yongin For EV Components Facility

0
Sterling Tools announced that this strategic partnership is anticipated to bring in Rs 250 crore in business over the next five years. This collaboration...

Tata Elxsi-Renesas MCU Boosts EV Cost Efficiency And Market Speed

0
The Motor Control Unit's modular, scalable design facilitates integration across various EV applications, reducing time to market by 40%, lowering design and development costs...

Ramkrishna Forgings To Supply Powertrain Parts To Top US Electric Carmaker

0
Indian producer of rolled, forged, and machined products enter the US electric vehicle market for the first time. Ramkrishna Forgings, an Indian supplier of rolled,...